Multivariate mixture model for myocardium segmentation combining multi-source images
نویسنده
چکیده
This paper proposes a method for simultaneous segmentation of multi-source images, using the multivariate mixture model (MvMM) and maximum of log-likelihood (LL) framework. The segmentation is a procedure of texture classification, and the MvMM is used to model the joint intensity distribution of the images. Specifically, the method is applied to the myocardial segmentation combining the complementary texture information from multi-sequence (MS) cardiac magnetic resonance (CMR) images. Furthermore, there exist inter-image misregistration and intra-image misalignment of slices in the MS CMR images. Hence, the MvMM is formulated with transformations, which are embedded into the LL framework and optimized simultaneously with the segmentation parameters. The proposed method is able to correct the interand intra-image misalignment by registering each slice of the MS CMR to a virtual common space, as well as to delineate the indistinguishable boundaries of myocardium consisting of pathologies. Results have shown statistically significant improvement in the segmentation performance of the proposed method with respect to the conventional approaches which can solely segment each image separately. The proposed method has also demonstrated better robustness in the incongruent data, where some images may not fully cover the region of interest and the full coverage can only be reconstructed combining the images from multiple sources.
منابع مشابه
Robust Image Segmentation using Active Contours : Level Set Approaches
Lee, Cheolha Pedro. Robust Image Segmentation using Active Contours: Level Set Approaches. (Under the direction of Dr. Wesley Snyder). Image segmentation is a fundamental task in image analysis responsible for partitioning an image into multiple sub-regions based on a desired feature. Active contours have been widely used as attractive image segmentation methods because they always produce sub-...
متن کاملActive Contours for Multispectral Images with Non-homogeneous Sub-regions
Image segmentation is a fundamental task in image analysis responsible for partitioning an image into multiple sub-regions based on a desired feature. Active contours have been widely used as attractive image segmentation methods because they always produce sub-regions with continuous boundaries, while the kernel-based edge detection methods, e.g. Sobel edge detectors, often produce discontinuo...
متن کاملRobust Method for E-Maximization and Hierarchical Clustering of Image Classification
We developed a new semi-supervised EM-like algorithm that is given the set of objects present in eachtraining image, but does not know which regions correspond to which objects. We have tested thealgorithm on a dataset of 860 hand-labeled color images using only color and texture features, and theresults show that our EM variant is able to break the symmetry in the initial solution. We compared...
متن کاملA multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کاملMBIS: Multivariate Bayesian Image Segmentation tool
We present MBIS (Multivariate Bayesian Image Segmentation tool), a clustering tool based on the mixture of multivariate normal distributions model. MBIS supports multichannel bias field correction based on a B-spline model. A second methodological novelty is the inclusion of graph-cuts optimization for the stationary anisotropic hidden Markov random field model. Along with MBIS, we release an e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1612.08820 شماره
صفحات -
تاریخ انتشار 2016